Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.832
Filtrar
1.
J Hazard Mater ; 469: 133935, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38442602

RESUMO

Bisphenol A (BPA) and its various forms used as BPA alternatives in industries are recognized toxic compounds and antiandrogenic endocrine disruptors. These chemicals are widespread in the environment and frequently detected in biological samples. Concerns exist about their impact on hormones, disrupting natural biological processes in humans, together with their negative impacts on the environment and biotic life. This study aims to characterize the interaction between BPA analogs and the androgen receptor (AR) and the effect on the receptor's normal activity. To achieve this goal, molecular docking was conducted with BPA and its analogs and dihydrotestosterone (DHT) as a reference ligand. Four BPA analogs exhibited higher affinity (-10.2 to -8.7 kcal/mol) for AR compared to BPA (-8.6 kcal/mol), displaying distinct interaction patterns. Interestingly, DHT (-11.0 kcal/mol) shared a binding pattern with BPA. ADMET analysis of the top 10 compounds, followed by molecular dynamics simulations, revealed toxicity and dynamic behavior. Experimental studies demonstrated that only BPA disrupts DHT-induced AR dimerization, thereby affecting AR's function due to its binding nature. This similarity to DHT was observed during computational analysis. These findings emphasize the importance of targeted strategies to mitigate BPA toxicity, offering crucial insights for interventions in human health and environmental well-being.


Assuntos
Disruptores Endócrinos , Receptores Androgênicos , Humanos , Receptores Androgênicos/metabolismo , Disruptores Endócrinos/metabolismo , Simulação de Acoplamento Molecular , Fenóis/metabolismo , Di-Hidrotestosterona/farmacologia , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/metabolismo
2.
Cell Commun Signal ; 22(1): 183, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491517

RESUMO

PURPOSE: Prostatitis is a highly prevalent condition that seriously affects men's physical and mental health. Although epidemiological investigations have provided evidence of a correlation between insufficient sleep and prostatitis, the pathogenesis of prostatitis remains unclear. We sought to identify the underlying mechanism involved and identify a promising therapeutic target. METHODS: Sleep deprivation (SD) was utilized to establish a mouse model of insufficient sleep in a special device. Prostatitis was observed at different time points post-SD. The degree of prostatitis was evaluated by pathological section and behavioural tests. Using immunofluorescence, western blot, and proteomic analyses, the underlying mechanism of SD-related prostatitis was investigated, and the development and therapeutic target of prostatitis were elucidated. RESULTS: SD, as an initial pathological trigger, resulted in a reduction in dihydrotestosterone and melatonin levels. Proteomic analysis revealed that the cGAS-STING pathway may play a significant role in inducing prostatitis. The subsequent results illustrated that the dual reduction in dihydrotestosterone and melatonin led to an accumulation of reactive oxygen species and the release of mitochondrial DNA (mt-DNA). The accumulation of mt-DNA activated the cGAS-STING pathway, which recruited inflammatory cells into the prostatic stroma through the secretion of interferon-ß. Consequently, an inflammatory microenvironment was formed, ultimately promoting the development of prostatitis. Notably, mice with SD-induced prostatitis gradually recovered to a normal state within 7 days of recovery sleep. However, after being subjected to SD again, these mice tended to have a more pronounced manifestation of prostatitis within a shorter timeframe, which suggested that prostatitis is prone to relapse. CONCLUSIONS: The cGAS-STING pathway activated by dual deficiency of dihydrotestosterone and melatonin plays a comprehensive inflammatory role in SD-related prostatitis. This research provides valuable insights into the pathogenesis, therapeutic targets, and prevention strategies of prostatitis.


Assuntos
Melatonina , Prostatite , Humanos , Masculino , Animais , Camundongos , Privação do Sono/complicações , Di-Hidrotestosterona/farmacologia , Proteômica , Sono , DNA Mitocondrial , Nucleotidiltransferases
3.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 213-218, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38372091

RESUMO

Neuroinflammation induced by microglia following spinal cord injury (SCI) leads to secondary neurologic injury. Androgens including testosterone and dihydrotestosterone (DHT) show as endogenous neuroprotective factors against multiple neurologic diseases, while their therapeutic role in SCI-induced neuroinflammation and underlying mechanism remains elusive. In the study, we aimed to investigate the role of DHT against microglia-induced neuroinflammation in SCI and evaluate its protective treatment. BV2 cells were activated by neuroinflammation via LPS in vitro. Adult male C57BL/6 mice were used to establish the SCI model. BV2 cells and SCI mice were administrated DHT. Microglia activation, pro-inflammatory factors, p38 and p65 phosphorylation, glial scar, fibrotic scar, histology, and locomotor function recovery were measured, respectively. We demonstrated that DHT administration attenuates neuroinflammation in microglia through inhibition of p38 and p65 pathways. Moreover, DHT reduces microglia and astrocyte accumulation, cord fibrosis and histologic damage. Besides, DHT ameliorates locomotor functional recovery after SCI. DHT is verified to play a neuroprotective role in SCI, which fights against neuroinflammation by inhibition of p38 and p65 pathways. Therefore, Mel is defined as a promising factor in protecting neural tissue after SCI.


Assuntos
NF-kappa B , Traumatismos da Medula Espinal , Animais , Masculino , Camundongos , Di-Hidrotestosterona/farmacologia , Di-Hidrotestosterona/uso terapêutico , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Doenças Neuroinflamatórias , NF-kappa B/metabolismo , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/tratamento farmacológico
4.
J Neuroendocrinol ; 36(3): e13370, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38344844

RESUMO

Excess levels of circulating androgens during prenatal or peripubertal development are an important cause of polycystic ovary syndrome (PCOS), with the brain being a key target. Approximately half of the women diagnosed with PCOS also experience metabolic syndrome; common features including obesity, insulin resistance and hyperinsulinemia. Although a large amount of clinical and preclinical evidence has confirmed this relationship between androgens and the reproductive and metabolic features of PCOS, the mechanisms by which androgens cause this dysregulation are unknown. Neuron-specific androgen receptor knockout alleviates some PCOS-like features in a peripubertal dihydrotestosterone (DHT) mouse model, but the specific neuronal populations mediating these effects are undefined. A candidate population is the agouti-related peptide (AgRP)-expressing neurons, which are important for both reproductive and metabolic function. We used a well-characterised peripubertal androgenized mouse model and Cre-loxP transgenics to investigate whether deleting androgen receptors specifically from AgRP neurons can alleviate the induced reproductive and metabolic dysregulation. Androgen receptors were co-expressed in 66% of AgRP neurons in control mice, but only in <2% of AgRP neurons in knockout mice. The number of AgRP neurons was not altered by the treatments. Only 20% of androgen receptor knockout mice showed rescue of DHT-induced androgen-induced anovulation and acyclicity. Furthermore, androgen receptor knockout did not rescue metabolic dysfunction (body weight, adiposity or glucose and insulin tolerance). While we cannot rule out developmental compensation in our model, these results suggest peripubertal androgen excess does not markedly influence Agrp expression and does not dysregulate reproductive and metabolic function through direct actions of androgens onto AgRP neurons.


Assuntos
Androgênios , Síndrome do Ovário Policístico , Animais , Feminino , Humanos , Camundongos , Gravidez , Proteína Relacionada com Agouti/metabolismo , Androgênios/metabolismo , Di-Hidrotestosterona/farmacologia , Camundongos Knockout , Neurônios/metabolismo , Obesidade/metabolismo , Peptídeos/farmacologia , Receptores Androgênicos/metabolismo , Virilismo/metabolismo
5.
Artigo em Chinês | MEDLINE | ID: mdl-38418180

RESUMO

Objective: To explore the optimal ratio of dihydrotestosterone and hydroxyflutamide (hereinafter referred to as DH), construct a dual release system of androgen and its antagonist, and analyze the application effect of this system in the repair of full-thickness burn wounds in mice. Methods: This study was an experimental study. The HaCaT cells were divided into blank group (without drug culture), low baseline group, medium baseline group, and high baseline group according to the random number table (the same grouping method below), and the last three groups of cells were cultured by adding three different ratios of DH. Under a medium ratio, the mass of dihydrotestosterone in the three baseline groups from low to high was 1.4, 2.8, and 4.0 µg, respectively, and the mass of hydroxyflutamide was 1.2, 1.6, and 2.0 µg, respectively. On this basis, under a small ratio, the mass of dihydrotestosterone was reduced by half and the mass of hydroxyflutamide was increased by half; under a large ratio, the mass of dihydrotestosterone was increased by half and the mass of hydroxyflutamide was reduced by half. After culture of 2 days, the cell proliferation level was detected by cell counting kit 8 (n=4). Sixteen 6-8-week-old male BALB/c mice were used to establish a full-thickness burn wound on the back and divided into blank group, small ratio group, medium ratio group, and large ratio group, with 4 mice in each group. On post injury day (PID) 7, normal saline containing different ratios of DH was locally dropped to the wounds of mice in the last three groups of mice (the total mass of DH in the three ratio groups from small to large was 127.5, 165.0, and 202.5 µg, respectively, and the mass ratios of dihydrotestosterone to hydroxyflutamide (hereinafter referred to as drug mass ratio) were 8∶9, 8∶3, and 8∶1, respectively), afterwards, the administration was repeated every 48 hours until PID 27; normal saline was dropped to the wound of mice in blank group at the aforementioned time points. The wound healing status on PID 0 (immediately), 7, 14, 21, and 28 was observed, and the wound healing rates on PID 7, 14, 21, and 28 were calculated (n=4). On PID 28, the wound tissue was taken, which was stained with hematoxylin and eosin for observing re-epithelialization and with Masson for observing collagen fibers, and the proportion of collagen fibers was analyzed (n=3). Twenty 6-8-week-old male BALB/c mice were used to establish a full-thickness burn wound on the back and divided into ordinary scaffold group, small proportion scaffold group, medium proportion scaffold group, and large proportion scaffold group (with 5 mice in each group). On PID 7, the wound was continuously dressed with a polycaprolactone scaffold without drug and a polycaprolactone scaffold containing DH with a drug mass ratio of 1∶3, 1∶1, or 3∶1 (i.e. the dual release system of androgen and its antagonist, with total mass of DH being about 1.7 mg) prepared by using electrospinning technology until the end of the experiment. Histopathological analyses of tissue (n=3) at the same time points as those in the previous animal experiment were performed. On PID 7 and 14, the wound exudates were collected and the relative abundance of bacterial communities was analyzed using 16S ribosomal RNA high-throughput sequencing (n=3). Results: After culture of 2 days, under a small ratio, the proliferation levels of HaCaT cells in low baseline group and high baseline group were significantly higher than the level in blank group (P<0.05). As the time after injury prolonged, the wounds of all four groups of mice continued to shrink. On PID 14, the wound healing rate of mice in large ratio group was 72.5% (61.7%, 75.1%), which was close to 53.3% (49.5%, 64.4%) in blank group (P>0.05); the wound healing rates of mice in small and medium ratio groups were 74.2% (71.0%, 84.2%) and 70.4% (65.1%, 74.4%), respectively, which were significantly higher than the rate in blank group (with both Z values being -2.31, P<0.05). On PID 21, the wound healing rate of mice in small ratio group was significantly higher than that in blank group (Z=-2.31, P<0.05). On PID 28, the wounds of mice in the three ratio groups were completely re-epithelialized and the epidermis was thicker than that in blank group; compared with that in blank group, the collagen fiber content in the wound tissue of mice in the three ratio groups was higher and arranged more orderly, and the proportions of collagen fibers in the wound tissue of mice in small and large ratio groups were significantly increased (P<0.05). On PID 28, the wounds of mice in ordinary scaffold group were partially epithelialized, while the wounds of mice in the three proportion scaffold groups were almost completely epithelialized. Among them, the wounds of mice in small proportion scaffold group had the thickest epidermis. The proportion of collagen fibers in the wound tissue of mice in small proportion scaffold group was significantly increased compared with that in ordinary scaffold group (P<0.05). On PID 7, the bacterial communities with high relative abundance in the wound exudation of mice in the four groups included bacteria of Corynebacterium, Staphylococcus, and Rhodococcus. On PID 14, the bacterial communities with high relative abundance in the wound exudation of mice in the four groups included bacteria of Stenotrophomonas, Rhodococcus, and Staphylococcus, and the number of bacterial species in the wound exudation of mice in the three proportion scaffold groups was more than that in ordinary scaffold group. Conclusions: When the drug mass ratio is relatively small, DH has the effect of promoting the proliferation of HaCaT cells. The ratio of 8∶9 is the optimal mass ratio of dihydrotestosterone to hydroxyflutamide, and DH with this mass ratio can promote re-epithelialization and collagen deposition of full-thickness burn wounds in mice, and promote wound healing. The constructed dual release system of androgen and its antagonist with DH in a 1∶3 drug mass ratio contributes to the re-epithelialization and collagen deposition of the full-thickness burn wounds in mice, and can improve the diversity of wound microbiota.


Assuntos
Queimaduras , Flutamida/análogos & derivados , Lesões dos Tecidos Moles , Camundongos , Masculino , Animais , Cicatrização , Androgênios/farmacologia , Di-Hidrotestosterona/farmacologia , Solução Salina , Colágeno , Queimaduras/tratamento farmacológico
6.
J Dermatol ; 51(4): 552-557, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38293734

RESUMO

Finasteride is commonly used for androgenetic alopecia (AGA) treatment. The aim of this study was to assess the therapeutic maintenance effect of a finasteride every other month (EOM) regimen and analyze clinical and laboratory differences in patients with AGA according to their treatment response. One hundred males with AGA who received finasteride 1 mg daily treatment for a year were enrolled in the study. At 1 year follow-up, treatment responses of patients who completed the visit schedule were assessed using five scales. The patients were assigned to good or bad response groups according to their assessment. Further, they were randomly divided into two groups (daily vs. EOM) and treated with finasteride (1 mg) for 1 more year. At 2 years follow-up, treatment efficacy was assessed. At 1-year follow-up, 36 patients completed the schedule, including eight and three patients in the good and bad response groups, respectively. At the 2-year follow-up, 23 patients completed the schedule, with nine in the daily group and 14 in the EOM group. Changes in global photographic assessment in the second year were 1.33 and 1.29 for the daily and EOM groups, respectively. The daily group showed an elevated hair density and lower concentration of dihydrotestosterone (DHT) and the DHT to testosterone ratio (DHT/T). However, the EOM group showed decreased hair density and elevated DHT and DHT/T. Following treatment response assessment after 1 year of treatment, the good response group showed early onset which was associated with maternal AGA. Analysis of serum androgen hormone magnitude of DHT reduction was much greater (54.4% vs. 44.4%). DHT/T was higher in the bad response group (1.98 vs. 2.33). We concluded that the finasteride EOM regimen showed similar maintenance effects to the daily regimen.


Assuntos
Alopecia , Finasterida , Masculino , Humanos , Finasterida/uso terapêutico , Estudos Prospectivos , Alopecia/induzido quimicamente , Cabelo , Di-Hidrotestosterona/farmacologia , Di-Hidrotestosterona/uso terapêutico , Inibidores de 5-alfa Redutase/uso terapêutico
7.
Sci Signal ; 17(821): eadi7861, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289986

RESUMO

Androgen binding to the androgen receptor (AR) in the cytoplasm induces the AR to translocate to the nucleus, where it regulates the expression of target genes. Here, we found that androgens rapidly activated a plasma membrane-associated signaling node that enhanced nuclear AR functions. In murine primary osteoblasts, dihydrotestosterone (DHT) binding to a membrane-associated form of AR stimulated plasma membrane-associated protein kinase G type 2 (PKG2), leading to the activation of multiple kinases, including ERK. Phosphorylation of AR at Ser515 by ERK increased the nuclear accumulation and binding of AR to the promoter of Ctnnb1, which encodes the transcription factor ß-catenin. In male mouse osteoblasts and human prostate cancer cells, DHT induced the expression of Ctnnb1 and CTNN1B, respectively, as well as ß-catenin target genes, stimulating the proliferation, survival, and differentiation of osteoblasts and the proliferation of prostate cancer cells in a PKG2-dependent fashion. Because ß-catenin is a master regulator of skeletal homeostasis, these results explain the reported male-specific osteoporotic phenotype of mice lacking PKG2 in osteoblasts and imply that PKG2-dependent AR signaling is essential for maintaining bone mass in vivo. Our results suggest that widely used pharmacological PKG activators, such as sildenafil, could be beneficial for male and estrogen-deficient female patients with osteoporosis but detrimental in patients with prostate cancer.


Assuntos
Androgênios , Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Androgênios/farmacologia , Androgênios/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Di-Hidrotestosterona/farmacologia , Di-Hidrotestosterona/metabolismo , Osteoblastos , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
8.
Cancer Rep (Hoboken) ; 7(1): e1922, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37903548

RESUMO

BACKGROUND: The androgen receptor (AR) has been studied as an approach to cancer therapy. AIMS: We used human breast cancer-derived cells with high, low, and very low expression levels of AR, in addition to prostate cancer-derived LNCaP and DU-145 cells as a positive and negative controls to examine apoptosis caused by a synthetic peptide that targets ARs. METHODS AND RESULTS: The peptide was produced to inhibit AR transactivation in breast cancer cell lines. We then measured cell viability, caspase-3 activity, and the ratio of Bax/Bcl-2. The findings indicated that the peptide (100-500 nM) in the presence of dihydrotestosterone (DHT) reduced cell growth in cells with high and low expression level of AR (p < .001), but not in cells with very low levels of AR. Treatment with 100-500 nM of peptide activated caspase-3 and increased the ratio of Bax/Bcl-2 in cells with high and low expression levels of AR. Also, increasing concentrations of the peptide (100-500 nM) reduced BrdU incorporation in the presence of DHT and promoted apoptosis in cells with high and low expression levels of AR (p < .001). CONCLUSION: The findings indicate the peptide significantly increased apoptosis in cancer cells.


Assuntos
Neoplasias da Próstata , Neoplasias de Mama Triplo Negativas , Masculino , Humanos , Receptores Androgênicos/metabolismo , Caspase 3 , Proteína X Associada a bcl-2 , Di-Hidrotestosterona/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Apoptose , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-bcl-2
9.
Eur J Pharmacol ; 963: 176237, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38048982

RESUMO

Androgenetic alopecia (AGA), one of the most common forms of hair loss, lacks satisfactory treatment methods in modern society. This study employed an experimental design combining in vitro and in vivo approaches to explore the effects of Cyanidin-3-O-glucoside (C3G) and Carboxypyranocyanidin-3-O-glucoside (Vitisin A) on AGA. In human dermal papilla cells (HDPCs), both anthocyanins demonstrated inhibitory effects on androgen receptors, significantly reduced dihydrotestosterone (DHT) induced apoptosis of HDPCs, and regulated the secretion of Fibroblast growth factor 7 and Transforming growth factor beta 1. In vitro transdermal experiment revealed that both C3G and Vitisin A could penetrate mice skin, aided by the application of cream. Furthermore, in vivo experiments with mice indicated that application of C3G or Vitisin A cream effectively improved hair follicles miniaturization, regression, and apoptosis caused by DHT. The repression of Wnt10b and ß-catenin expression induced by DHT was prevented by C3G and Vitisin A in both cell and mouse model. Consequently, these findings suggest that C3G and Vitisin A could be considered as alternative methods for alleviating AGA.


Assuntos
Antagonistas de Androgênios , Antocianinas , Humanos , Animais , Camundongos , Antocianinas/farmacologia , Antocianinas/uso terapêutico , Antagonistas de Androgênios/farmacologia , Alopecia/tratamento farmacológico , Alopecia/metabolismo , Di-Hidrotestosterona/farmacologia , Apoptose , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico
10.
Endocrine ; 83(3): 733-746, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37966704

RESUMO

OBJECTIVE: We examined how the sex steroids influence the synthesis of gonadotropins. MATERIALS AND METHODS: The effects of sex steroids estradiol (E2), progesterone (P4), and dihydrotestosterone (DHT) in pituitary gonadotroph cell model (LßT2 cells) in vitro and ovary-intact rats in vivo were examined. The effects of sex steroids on Kiss1 gene expression in the hypothalamus were also examined in ovary-intact rats. RESULTS: In LßT2 cells, E2 increased common glycoprotein alpha (Cga) and luteinizing hormone beta (Lhb) subunit promoter activity as well as their mRNA expression. Although gonadotropin subunit promoter activity was not modulated by P4, Cga and Lhb mRNA expression was increased by P4. DHT inhibited Cga and Lhb mRNA expression with a concomitant decrease in their promoter activity. During the 2-week administration of exogenous E2 to ovary-intact rats, the estrous cycle determined by vaginal smears was disrupted. P4 or DHT administration completely eliminated the estrous cycle. Protein expression of all three gonadotropin subunits within the pituitary gland was inhibited by E2 or P4 treatment in vivo; however, DHT reduced Cga expression but did not modulate Lhb or follicle-stimulating hormone beta subunit expression. E2 administration significantly repressed Kiss1 mRNA expression in a posterior hypothalamic region that included the arcuate nucleus. P4 and DHT did not modulate Kiss1 mRNA expression in this region. In contrast, P4 administration significantly inhibited Kiss1 mRNA expression in the anterior region of the hypothalamus that included the anteroventral periventricular nucleus. The expression of gonadotropin-releasing hormone (Gnrh) mRNA in the anterior hypothalamic region, where the preoptic area is located, appeared to be decreased by treatment with E2 and P4. CONCLUSION: Our findings suggest that sex steroids have different effects in the hypothalamus and pituitary gland.


Assuntos
Kisspeptinas , Ovário , Ratos , Feminino , Animais , Kisspeptinas/genética , Kisspeptinas/metabolismo , Hipotálamo/metabolismo , Gonadotropinas Hipofisárias/genética , Gonadotropinas Hipofisárias/metabolismo , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Estradiol/farmacologia , RNA Mensageiro/metabolismo , Di-Hidrotestosterona/farmacologia , Expressão Gênica
11.
Environ Toxicol ; 39(3): 1402-1414, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37987225

RESUMO

This study investigated the effects of Selenium (Se) on testis toxicity induced by Acrylamide (ACR) in rats. In our study, 50 male adult rats were used, and the rats were divided into five groups; control, ACR, Se0.5 + ACR, Se1 + ACR, and Se1. Se and ACR treatments were applied for 10 days. On the 11th day of the experimental study, intracardiac blood samples from the rats were taken under anesthesia and euthanized. Sperm motility and morphology were evaluated. Dihydrotestosterone, FSH, and LH levels in sera were analyzed with commercial ELISA kits. MDA, GSH, TNF-α, IL-6, and IL-1ß levels and SOD, GPx, and CAT, activities were measured to detect the level of oxidative stress and inflammation in rat testis tissues. Expression analysis of HSD17B1, StAR, CYP17A1, MAPk14, and P-53 as target mRNA levels were performed with Real Time-PCR System technology for each cDNA sample synthesized from rat testis RNA. Testicular tissues were evaluated by histopathological, immunohistochemical, and immunofluorescent examinations. Serum dihydrotestosterone and FSH levels decreased significantly in the ACR group compared to the control group, while LH levels increased and a high dose of Se prevented these changes caused by ACR. A high dose of Se prevented these changes caused by ACR. ACR-induced testicular oxidative stress, inflammation, apoptosis, changes in the expression of reproductive enzymes, some changes in sperm motility and morphology, DNA, and tissue damage, and Se administration prevented these pathologies caused by ACR. As a result of this study, it was determined that Se prevents oxidative stress, inflammation, apoptosis, autophagy, and DNA damage in testicular toxicity induced by ACR in rats.


Assuntos
Selênio , Testículo , Ratos , Masculino , Animais , Selênio/farmacologia , Di-Hidrotestosterona/metabolismo , Di-Hidrotestosterona/farmacologia , Acrilamida , Motilidade dos Espermatozoides , Estresse Oxidativo , Antioxidantes/metabolismo , Inflamação/metabolismo , Hormônio Foliculoestimulante/metabolismo , Apoptose , Dano ao DNA , Autofagia
12.
Endocrine ; 83(1): 242-250, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37922092

RESUMO

PURPOSE: Polycystic ovarian syndrome (PCOS) is an endocrine-metabolic condition affecting 5-10% of reproductive-aged women and characterized by hyperandrogenism, insulin resistance (IR), and hyperinsulinemia. CFTR is known to be regulated by steroid hormones, and our previous study has demonstrated an essential role of CFTR in ß-cell function. This study aims to investigate the contribution of androgen and CFTR to hypersecretion of insulin in PCOS and the underlying mechanism. METHODS: We established a rat PCOS model by subcutaneously implanting silicon tubing containing Dihydrotestosterone (DHT). Glucose tolerance test with insulin levels was performed at 9 weeks after implantation. A rat ß-cell line RINm5F, a mouse ß-cell line ß-TC-6, and mouse islets were treated with DHT, and with or without the androgen antagonist flutamide for CFTR and insulin secretion-related functional assays or mRNA/protein expression measurement. The effect of CFTR inhibitors on DHT-promoted membrane depolarization, glucose-stimulated intracellular Ca2+ oscillation and insulin secretion were examined by membrane potential imaging, calcium imaging and ELISA, respectively. RESULTS: The DHT-induced PCOS model showed increased body weight, impaired glucose tolerance, and higher blood glucose and insulin levels after glucose stimulation. CFTR was upregulated in islets of PCOS model and DHT-treated cells, which was reversed by flutamide. The androgen receptor (AR) could bind to the CFTR promoter region, which was enhanced by DHT. Furthermore, DHT-induced membrane depolarization, enhanced glucose-stimulated Ca2+ oscillations and insulin secretion, which could be abolished by CFTR inhibitors. CONCLUSIONS: Excessive androgen enhances glucose-stimulating insulin secretion through upregulation of CFTR, which may contribute to hyperinsulinemia in PCOS.


Assuntos
Hiperinsulinismo , Resistência à Insulina , Síndrome do Ovário Policístico , Camundongos , Feminino , Ratos , Humanos , Animais , Adulto , Síndrome do Ovário Policístico/metabolismo , Androgênios/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Flutamida/farmacologia , Regulação para Cima , Resistência à Insulina/fisiologia , Insulina , Di-Hidrotestosterona/farmacologia , Glucose/farmacologia
13.
J Clin Endocrinol Metab ; 109(2): e735-e744, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-37672642

RESUMO

BACKGROUND: Arteries from boys with hypospadias demonstrate hypercontractility and impaired vasorelaxation. The role of sex hormones in these responses in unclear. AIMS: We compared effects of sex steroids on vascular reactivity in healthy boys and boys with hypospadias. METHODS: Excess foreskin tissue was obtained from 11 boys undergoing hypospadias repair (cases) and 12 undergoing routine circumcision (controls) (median age [range], 1.5 [1.2-2.7] years) and small resistance arteries were isolated. Vessels were mounted on wire myographs and vascular reactivity was assessed in the absence/presence of 17ß-estradiol, dihydrotestosterone (DHT), and testosterone. RESULTS: In controls, testosterone and 17ß-estradiol increased contraction (percent of maximum contraction [Emax]: 83.74 basal vs 125.4 after testosterone, P < .0002; and 83.74 vs 110.2 after estradiol, P = .02). 17ß-estradiol reduced vasorelaxation in arteries from controls (Emax: 10.6 vs 15.6 to acetylcholine, P < .0001; and Emax: 14.6 vs 20.5 to sodium nitroprusside, P < .0001). In hypospadias, testosterone (Emax: 137.9 vs 107.2, P = .01) and 17ß-estradiol (Emax: 156.9 vs 23.6, P < .0001) reduced contraction. Androgens, but not 17ß-estradiol, increased endothelium-dependent and endothelium-independent vasorelaxation in cases (Emax: 77.3 vs 51.7 with testosterone, P = .02; and vs 48.2 with DHT to acetylcholine, P = .0001; Emax: 43.0 vs 39.5 with testosterone, P = .02; and 39.6 vs 37.5 with DHT to sodium nitroprusside, P = .04). CONCLUSION: In healthy boys, testosterone and 17ß-estradiol promote a vasoconstrictor phenotype, whereas in boys with hypospadias, these sex hormones reduce vasoconstriction, with androgens promoting vasorelaxation. Differences in baseline artery function may therefore be sex hormone-independent and the impact of early-life variations in androgen exposure on vascular function needs further study.


Assuntos
Acetilcolina , Hipospadia , Masculino , Humanos , Lactente , Nitroprussiato/farmacologia , Hipospadia/cirurgia , Testosterona/farmacologia , Estradiol/farmacologia , Androgênios/farmacologia , Di-Hidrotestosterona/farmacologia
14.
Endocrinology ; 165(1)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37972259

RESUMO

Interleukin 33 (IL-33) signaling regulates most of the key processes of pregnancy, including decidualization, trophoblast proliferation and invasion, vascular remodeling, and placental growth. Accordingly, dysregulation of IL-33, its membrane-bound receptor (ST2L, transducer of IL-33 signaling), and its soluble decoy receptor (sST2, inhibitor of IL-33 signaling) has been linked to a wide range of adverse pregnancy outcomes that are common in women with obesity and polycystic ovary syndrome, that is, conditions associated with hyperandrogenism, insulin resistance, and compensatory hyperinsulinemia. To reveal if androgens and insulin might modulate uteroplacental IL-33 signaling, we investigated the effect of dihydrotestosterone (DHT) and/or insulin on the expression of ST2L and sST2 (along with the activity of their promoter regions), IL-33 and sIL1RAP (heterodimerization partner of sST2), during in vitro decidualization of endometrial stromal cells from 9 healthy women. DHT and insulin markedly upregulated sST2 secretion, in addition to the upregulation of its messenger RNA (mRNA) expression, while the proximal ST2 promoter, from which the sST2 transcript originates, was upregulated by insulin, and in a synergistic manner by DHT and insulin combination treatment. On the other hand, sIL1RAP was slightly downregulated by insulin and IL-33 mRNA expression was not affected by any of the hormones, while ST2L mRNA expression and transcription from its promoter region (distal ST2 promoter) could not be detected or showed a negligibly low level. We hypothesize that high levels of androgens and insulin might lead to subfertility and pregnancy complications, at least partially, through the sST2-dependent downregulation of uteroplacental IL-33 signaling.


Assuntos
Insulina , Interleucina-33 , Humanos , Feminino , Gravidez , Interleucina-33/genética , Interleucina-33/metabolismo , Interleucina-33/farmacologia , Insulina/farmacologia , Di-Hidrotestosterona/farmacologia , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Transdução de Sinais , Placenta/metabolismo , Androgênios/farmacologia , RNA Mensageiro , Células Estromais/metabolismo
15.
Int J Mol Sci ; 24(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37762034

RESUMO

The precise molecular mechanisms responsible for resistance to cisplatin-based chemotherapy in patients with bladder cancer remain elusive, while we have indicated that androgen receptor (AR) activity in urothelial cancer is associated with its sensitivity. Our DNA microarray analysis in control vs. AR-knockdown bladder cancer sublines suggested that the expression of a GABA B receptor GABBR2 and AR was correlated. The present study aimed to determine the functional role of GABBR2 in modulating cisplatin sensitivity in bladder cancer. AR knockdown and dihydrotestosterone treatment considerably reduced and induced, respectively, GABBR2 expression, and the effect of dihydrotestosterone was at least partially restored by an antiandrogen hydroxyflutamide. A chromatin immunoprecipitation assay further revealed the binding of AR to the promoter region of GABBR2 in bladder cancer cells. Meanwhile, GABBR2 expression was significantly elevated in a cisplatin-resistant bladder cancer subline, compared with control cells. In AR-positive bladder cancer cells, knockdown of GABBR2 or treatment with a selective GABA B receptor antagonist, CGP46381, considerably enhanced the cytotoxic activity of cisplatin. However, no additional effect of CGP46381 on cisplatin-induced growth suppression was seen in GABBR2-knockdown cells. Moreover, in the absence of cisplatin, CGP46381 treatment and GABBR2 knockdown showed no significant changes in cell proliferation or migration. These findings suggest that GABBR2 represents a key downstream effector of AR signaling in inducing resistance to cisplatin treatment. Accordingly, inhibition of GABBR2 has the potential of being a means of chemosensitization, especially in patients with AR/GABBR2-positive bladder cancer.


Assuntos
Cisplatino , Neoplasias da Bexiga Urinária , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Di-Hidrotestosterona/farmacologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Proliferação de Células , Linhagem Celular Tumoral
16.
J Fish Biol ; 103(6): 1476-1487, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37641389

RESUMO

Sex steroids are known to modulate immune responses and as a result many of the immune parameters in seasonally breeding organisms show reproductive-phase dependent variation. Androgens, the male sex steroids, are largely reported to be immunosuppressive. Together with other pattern recognition receptors, the nucleotide-binding and oligomerization domain-like receptors (NLRs) serve as intracellular sentinels and are essential to defense mechanisms. Interestingly, to date the transcriptional modulation of NLRs by androgens has not been explored. In the present study, we investigated the reproductive-phase dependent expression of NLRs in the male spotted snakehead Channa punctata. Furthermore, the effect of dihydrotestosterone (DHT) on NLR expression was studied. The expression of NLRs was observed to be most pronounced during the spawning phase of the fish, which is marked by the highest testosterone level. In vivo as well as in vitro studies showed the diverse effect of DHT on NLR expression depending on the duration and mode of treatment, as well as the immune tissue studied.


Assuntos
Di-Hidrotestosterona , Masculino , Animais , Di-Hidrotestosterona/farmacologia , Expressão Gênica , Fagocitose , Androgênios , Nucleotídeos
17.
J Biophotonics ; 16(10): e202300087, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37418658

RESUMO

Androgenetic alopecia (AGA) is the most common type of hair loss caused by dihydrotestosterone (DHT) binding to androgen receptors in dermal papilla cells (DPCs). Photobiomodulation (PBM) is a promising treatment for AGA but suffers from inconsistent outcomes and inconsistent effective light parameters. This study investigated the impact of red light at various irradiances on normal and DHT-treated DPCs. Our results suggested that red light at 8 mW/cm2 was most effective in promoting DPCs growth. Furthermore, a range of irradiances from 2 to 64 mW/cm2 modulated key signaling pathways, including Wnt, FGF, and TGF, in normal and DHT-treated DPCs. Interestingly, 8 mW/cm2 had a greater impact on these pathways in DHT-treated DPCs and altered the Shh pathway, suggesting that the effect of PBM varies with the cellular environment. This study highlights specific factors that influence PBM effectiveness and provides insight into the need for personalized PBM treatment approaches.


Assuntos
Di-Hidrotestosterona , Cabelo , Humanos , Di-Hidrotestosterona/farmacologia , Di-Hidrotestosterona/metabolismo , Cabelo/metabolismo , Folículo Piloso/metabolismo , Alopecia/metabolismo , Receptores Androgênicos/metabolismo
18.
Anim Reprod Sci ; 255: 107292, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37406563

RESUMO

Dihydrotestosterone (DHT) is a potent nonaromatizable 5α-reduced androgen with both positive and negative effect on inflammation process. However, it remains unknown whether DHT can regulate Lipopolysaccharides (LPS)-induced inflammation in bovine endometrial epithelial cells (bEECs). Here, we demonstrated that the DHT biosynthesis ability and androgen receptors (AR) expression is defective in bovine endometrial with endometritis, which aggravates endometrial inflammation. In vitro study, we established a LPS-induced inflammation model in bEECs, and found that DHT inhibited the TLR4 and MyD88 protein as well as TNF-α, IL-1ß, and IL-6 mRNA of bEECs in a dose-dependent manner. Moreover, the anti-inflammation effect of DHT was blocked by AR inhibitor flutamide. Together, we demonstrated that supplementing DHT can alleviate the inflammation response of bEECs caused by LPS, which is associated with AR regulating the inhibition of TLR4/MyD88 signaling pathway.


Assuntos
Doenças dos Bovinos , Endometrite , Feminino , Animais , Bovinos , Lipopolissacarídeos/toxicidade , Di-Hidrotestosterona/farmacologia , Di-Hidrotestosterona/metabolismo , Receptores Androgênicos/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/farmacologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/veterinária , Transdução de Sinais , Endometrite/induzido quimicamente , Endometrite/veterinária , Endometrite/metabolismo , Células Epiteliais , Doenças dos Bovinos/metabolismo
19.
J Endocrinol ; 259(1)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37466473

RESUMO

Polycystic ovary syndrome (PCOS) is one of the most common causes of infertility in women. Approximately half of the diagnosed individuals also experience the metabolic syndrome. Central and peripheral resistance to the hormones insulin and leptin have been reported to contribute to both metabolic and reproductive dysregulation. In PCOS and preclinical PCOS animal models, circulating insulin and leptin levels are often increased in parallel with the development of hormone resistance; however, it remains uncertain whether these changes contribute to the PCOS state. In this study, we tested whether central actions of protein tyrosine phosphatase 1B (PTP1B) and suppressor of cytokine signaling 3 (SOCS3), negative regulators of insulin and leptin signaling pathways, respectively, play a role in the development of PCOS-like phenotype. A peripubertal dihydrotestosterone (DHT) excess PCOS-like mouse model was used, which exhibits both metabolic and reproductive dysfunction. Mice with knockout of the genes encoding PTP1B and SOCS3 from forebrain neurons were generated, and metabolic and reproductive functions were compared between knockout and control groups. DHT treatment induced mild insulin resistance but not leptin resistance, so the role of SOCS3 could not be tested. As expected, DHT excess abolished estrous cycles and corpora lutea presence and caused increased visceral adiposity and fasting glucose levels. Knockout mice did not show any rescue of reproductive dysfunction but did have reduced adiposity compared to the control DHT mice. These data suggest that negative regulation of central insulin signaling by PTP1B is not responsible for peripubertal DHT excess-induced reproductive impairments but may mediate its increased adiposity effects.


Assuntos
Síndrome do Ovário Policístico , Animais , Feminino , Humanos , Camundongos , Di-Hidrotestosterona/farmacologia , Modelos Animais de Doenças , Insulina , Camundongos Knockout , Neurônios/metabolismo , Obesidade/complicações , Síndrome do Ovário Policístico/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética
20.
Cell Death Dis ; 14(6): 363, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328487

RESUMO

The incidence of bladder cancer (BLCA) in men is higher than that in women. Differences in androgen levels between men and women are considered the main causes of incidence rate differences. In this study, dihydrotestosterone (DHT) significantly increased the proliferation and invasion of BLCA cells. In addition, BLCA formation and metastatic rates were higher in N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-treated male mice than in female and castrated male mice in vivo. However, immunohistochemistry showed that androgen receptor (AR) was expressed at low levels in normal and BLCA tissues of men and women. The classical AR pathway considers that DHT binds to AR and induces it to enter the nucleus, where it functions as a transcription factor. Here, a non-AR combination pathway of androgen that promoted BLCA development was investigated. The EPPK1 protein was bombarded with DHT, as determined by biotinylated DHT-binding pull-down experiments. EPPK1 was highly expressed in BLCA tissues, and EPPK1 knockdown significantly inhibited BLCA cell proliferation and invasion promoted by DHT. Moreover, JUP expression was elevated in DHT-treated high-EPPK1 expressing cells, and JUP knockdown inhibited cell proliferation and invasion. EPPK1 overexpression increased tumour growth and JUP expression in nude mice. Furthermore, DHT increased the expression of the MAPK signals p38, p-p38, and c-Jun, and c-Jun could bind to the JUP promoter. However, the promotion of p38, p-p38, and c-Jun expression by DHT was not observed in EPPK1 knockdown cells, and a p38 inhibitor suppressed the DHT-induced effects, indicating that p38 MAPK may be involved in the regulation of DHT-dependent EPPK1-JUP-promoted BLCA cell proliferation and invasion. The growth of bladder tumours in BBN-treated mice was inhibited by the addition of the hormone inhibitor goserelin. Our findings indicated the potential oncogenic role and mechanism of DHT in BLCA pathogenesis through a non-AR pathway, which may serve as a novel therapeutic target for BLCA.


Assuntos
Androgênios , Neoplasias da Bexiga Urinária , Animais , Feminino , Masculino , Camundongos , Androgênios/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Di-Hidrotestosterona/farmacologia , Camundongos Nus , Receptores Androgênicos/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...